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(Abstract)

The synthesis, spectral characterization, and electrochemical behavior

of bis(tri-n-hexylsiloxy)-2,3-phthalocyaninatosilicon [SiPc(OR)2], its dimer

( 17
6RO(SiPcO)2R], and its naphthalocyanine analog FSiNc(OR) ] are described.

All compounds show near UV absorption corresponding to Soret and N bands and

intense absorption in the visible-near IR region corresponding to Q-bands.

In CH2Cl2, within the solvent stability limit, there are two reductions and
2.

one oxidation for SiPc(OR)2  and two reductions and two oxidations for

RO(SiPcO)2R and SiNc(OR) ; all appear as reversible one electron waves,

although n=2 for the dimer. The difference in the peak potentials of the

first oxidation and first reduction waves agrees well with the excitation

energy and fluorescence (corresponding to Q-bands) of SiPc(OR) 2 and
I7.-

SiNc(OR)2. Both compounds emit upon electrochemical generation of reduced

and oxidized forms (ecl). The corrected eci maxima are near 684 nm for

SiPc(CR)2 and 792 nn for SiNc(OR) 2; the latter corresponds to the longest

wavelength ecl emission reported so far. The phthalocyanine dimer,

RO(SiPcO) 2R, is easier to reduce and easier to oxidize than the monomer.

The voltammetric waves in this case involve two-electron transfers with peak

splittings characteristic of le waves suggesting that tLte two phthalocyanine

rings in the dimer do not strongly interact. No flourescence or ecl was

observed from the dimer.

(end of abstract)
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INTRODUCTION

Phthalocyanine compounds often show high thermal and chemical stability

and interesting optical and electrical properties. 1-5 We and others have

been interested in the conductivities of these materials 6'7 and in their

application to the sensitization and stabilization of semiconductor

electrodes in photoeletrochemical cells.8'9  The group IV metal

phthalocyanines are of interest because various groups can be attached to

tne axial (or trans) positions.10 Further, some group IV pnthalocyanines

are linear stacked polymers. 4'11 We describe here the synthesis and the

electrochemical and spectroscopic properties of a trialkylsiloxysilicon

phthalocyanine, bis(tri-n-hexylsiloxy)phthalocyaninatosilicon [SiPc(OR) 2],

and of its 2,3-naphthalocyanine analog, [SiNc(OR) 2], (Fig. 1). We also

describe the synthesis and properties of the dimeric analog of the

:~~,~,~nye RC(Si%0O2R]. The presence of tne trialkylsilcxy groups on

tke central Si atom leads to relatively high sol>bility in these co:7p-uns

and permits studies of solutions of them at the mM level.

EX PER I< VEINTAL

Synthesis of SiNc[OSi(n-C H1 3 ) 3 ] 2 and SiPc[OSi(n-C Hl3 ) 3 ] 2.

2,3-Naphthalenedicarbonitrile. The procedure employed is a modification of one

used by Luk'yanets. 12  A mixture of a,.,u',a '-tetrabromo-o-xylene (200 g),

fumaronitrile (64 g), Nal (200 g), and dry dimethylformamide (2L) was heated

at 750 for 5.5 h. The resultant was allowed to cool to 65'C and then poured

into a mixture of ice and water (3L). Sodium bisulfite was added to the

suspension obtained (which was dark red), until it turned yellow-tan (65 g).

The product was filtered off, washed, vacuum-dried (700 C), and weighed (65
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g, 78%).

A small portion of this product was sublimed (1600 C) in air at

atmcspheric pressure: mp 2560 C (lit122510 C); IR (Nujol) 2220 (C-N) cm'l;

NI R (200 MHz, CDCI 3) 8.37 (s, 1,4-H); 8.00 (m,5,8-H), 7.81 (m, 6,7-H);

mass spectrum, m/z (rel intensity) 178 (M+ , 100), 151 (20). Anal. Calcd.

for C 12H6N2: C, 80.88; H, 3.40; N, 15.72. Found: C,80.83; H, 3.56; N,

15.68.

The sublimed compound is composed of small, colorless needles. The

synthesis product is a beige color and is satisfactory for use as an

intermedi ate.

1,3-Diiminobenz(f)isoindoline. The synthesis used by Esposito for

1,3-diiminoisoindoline served as a model. Anhydrous NH3 was slowly

bubbled through a stirred mixture of 2,3-naphthalenedicarbonitrile (10.2 g),

sodium methoxide (1.5 g), and dry methanol (90 mL) for 45 min. With

continued NH3 introduction, the mixture was refluxed for 3 h. After the

resultant had cooled, the product was collected by filtration, washed,

air-dried, and weighed (9.2 g, 82): IR (Nujol) 3285, 3200, 3080, 1700,

1640, 1545, 1520 cm-I; NMR (100 MHz, (CD3 ) 2 S0), 8.31 (s, 1,4-H), 8.08 (m,

5,8-H), 7.68 (m, 6,7-H); mass spectrum m/z (rel intensity) 196 (70), 195

("+,10c), 179 (68), 126 (51), 63 (59), 51 (55).

From batch to batch the product ranges from yellow to green. Attempts

made to purify it by recrystallization and sublimation failed. As obtained,

the product is sufficiently pure for use as a naphthalocyanine precursor.

SiNcCI2. A mixture of 1,3-diiminobenz(f)isoindoline (6.0 g), SiCl4

(5.4 mL), dry tetrahydronaphthalene (40 mL), and dry tri-n-butylamine (20

mL) was refluxed for 2.5 h. The resultant was allowed to cool and then

diluttd with methanol (30 mL). The product was filtered off, washed,

air-dried, and weighed (5.8 g): IR (Nujol) 475 (m, Si-Cl) cm-1 .
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The product is quite impure, containing perhaps as much as 20-40%

impurities. It is dark green and has very low solubility in a variety of

Drganic solvents. It also has little volatility. Attempts made to purify

it failed.

SiNc(OH) . A mixture of SiNcCl 2 (5.8 g) and concentrated H2S04 (200

m L) was stirred for 2 h, and then poured over ice (600 g). The solid was

filtered off, washed with water and an acetone-water solution. A mixture of

this solid and concentrated NH4OH (150 mL) was refluxed for I h and allowed to

cool. The resulting solid was filtered off, washed, vacuum-dried, and weighed

(5.6 g). Part of it (4.3 g) was extracted with pyridine in a Soxhlet

extractor, washed, vacuum-dried, and weighed (2.8 g).

A pure sample of the hydroxide was obtained by hydrolysis of

Si Nc[OSi (n-C6H13)3]2  (see below). A mixture of chromatographed

SiNc[OSi(n-CsHj3)3]2  (100 rag), water (3 mL), 1,2-dimethoxyethane (60 mL),

and concentrated HCl (0.06 mL) was refluxed for 5 h. The resulting

suspersion was allowed to cool, and the solid was collected by filtration,

washed, vacuum-dried, and weighed (29 mg, 50,%): IR(Nujol) 3435 (0-H), 840

(Si-0) cm-  Anal. Calcd. for C 48H 26N80 2Si: C, 74.40; H, 3.38; Si, 3.62.

Found: C, 74.04; H, 3.71; Si, 3.52.

The compound is green. It is, at best, only slightly soluble in a

variety of organic solvents. The product of the SiNcCl2 synthesis is2I
generally satisfactory for use as an intermediate.

Si;c[OSiHn-C6H 13)3]2. For the synthesis of this compound, a mixture of

Sic(OH)2 made from SiN:Cl 2 (600 mg), tri-n-hexylchlorosilane (3.0 mL), dry

tri-n-butylamine (2.0 mL), and dry 3-picoline (70 mL) was refluxed for 1.5

h. The solution obtained was allowed to cool and then filtered (no

residue). The filtrate was poured into an ethanol-water solution (1:1, 100

mL), and the product was separated by filtration from the resulting

II Iil I____I ii el l,
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s-.spension. After being washed, it was vacuum-dried, and weighed (808 mg, 78.).

The product was chromatographed on alumina (activity I) with a

t-zluene-hexanes solution (3:1) as the eluant: mp 2780 C; IR (Nujol) 1250

IE-CH2), 1040 (Si-0-Si) cm-1 ; NMR (200 MHz, CDCl 3 ) 10.11 (s, 1,4-Nc),

8.69 (m, 5,8-Nc), 7.94 (m, 6,7-Nc), 0.61 (m,--CH2), 0.41 (t, CH3), 0.22 (m,

S-CH2), 0.06 (in, v -CH2 ) , -0.98 (m, a-CH2), -2.05 (m,a -CH2). Anal. Calcd.

f~r C 84H 02 N802Si3: C, 75.29; H, 7.67; Si, 6.29. Found: C, 75.05; H, 7.69;

Si, 6.03.

The compound is green. It is stable and soluble in a variety of

nprylar and chlorinated organic solvents. However, it is insoluble in

a:etonitrile. As shown by its NMR spectrum, the synthesis product contains

a small amount of the dimer (n-C6H13)3SiO(SiNcO) 2Si(n-C 6H1 3)3.

SiPc[OSi n-C6 H1 3)3]2. A synthetic procedure similar to that described

tv Douglass 14  was followed. A mixture of SiPc(OH) 2 (0.75 g),

t'i-n-hexylchlorosilane (5.0 mL), and dry pyridine '75 mL) was refluxed for

5 h. After the solution obtained had been allowed to cool, it was filtered

(no residue) and concentrated under vacuum. The resulting oil was mixed

w'th pentanes (10 mL) and the slurry formed was filtered. The solid was

w~shed with pentanes (10 mL) and an acetone-water solution, vacuum-dried,

and weighed '0.78 g). To recover additional product, the pentane filtrates

were combined , concentrated, and filtered. The solid was washed,

vacuum-dried, and weighed (0.28 g, combined yield 78%).

The co-,bined solids were chromatographed as described by Janson 15 on

alumina (activity I) with a toluene-hexanes solution (1:2) as the eluant: mp

1750 C (lit 15  1750 C); IR(Nujol) 1250 (Si-CH2 ), 1040 (Si-O-Si) cm'1; NMR

(200 MHz, COCd 3) : 9.63 (m, 3,6-Pc), 8.31 (m, 4,5-Pc), 0.82 (m,; -CH2 ), 0.71

(t, CH3), 0.36 (m, '-CH 2 ), 0.02 (m,y -CH2), -1.28 (m, S-CH 2), -2.45 (m,

i-CH2). Anal. Calcd. for C 68 H9 4 N8 02 Si 3 : C, 71.66; H, 8.31; Si, 7.39.
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-ound: C, 71.60; H, 8.37; Si, 7.41.

In accordance with expectations, the compound is stable and is blue

Wnen finely divided. It can be sublimed under vacuum at elevated

temperatires and is soluble in many organic solvents including mixed

Pentanes. The synthesis product contains, as is evident from its NMR

spectrum, a small amount of (n-C6H1 3 ) 3 SiO(SiPcO) 2Si(n-C 6H13 )3*14

. 3)3S4LSic0)2 H13 )3 . 1  The procedure used earlier 16 for a

similar dimer was employed as a model. A mixture of SiPc(OH) 2 (540 mg),

SiPcCl 2 (294 mg), dry tri-n-butylamine (1.0 mL), and dry, nitrogen-purged

quinoline (65 mL) was refluxed for 15 min. The resulting suspension was

allowed to cool, mixed with concentrated HC1 (46 mL), and filtered. The

solid obtained was washed. A mixture of this solid and concentrated H so

(50 mL) was stirred for 2 h, and then poured over ice (200 g). The solid

was filtered off and washed. A mixture of the solid, concentrated NH 4H

\'150 mL), and pyridine (IC mL) was refluxed for I h, cooled, and filtered.

The resulting hydroxy-capped oligomers were washed, vacuum-dried, and

eigh,ed (763 mg, 96%).

A mixture of the oligomers (707 mg), tri-n-hexylchlorosilane (0.5 mL),

an- dry pyridine (125 mL) was refluxed for 2.5 h. The solution obtained was

filtered while hot (46 mg residue) and evaporated to dryness under vacuum.

After being washed, the solid was air-dried and weighed (1.13 g).

This solid was chromatographed on alumina (activity Il). The desired

product was eluted with a toluene-hexanes solution (1:3) (376 mg, 320

overall): mp 2010 C; IR(Nujol) 1250 (Si-CH2), 1025 (SiR-0-SiPc), 970

(SiPc-O-SiPc) cm 1; NMR (200 MHz, CDCl 3) 9.00 (m, 3,6-Pc), 8.31 (m,

4,5-Pc), 0.43 (overlapping m, CH3 and c-CH 2), -0.20 (m, -CH2), -0.65 (m,

-CH2 ), -2.29 (m, --CH2), -3.54 (m, a-CH 2).

The compound is a blue solid that is soluble in common organic



solvents. Further elution of the column yielded the trimer, the tetramer,

and a mixture with a substantial pentamer content.

Ele-iental analyses were done by Galbraith Laboratories, Inc.,

ns;vI Ie, TN.

"lectrccheical Measurements
The solven)7etrylene chloride (CH2 Cl MCB Omnisolv grade; EM Science,

Sibtstown, NJ)) was dried by vacuum distillation over molecular sieves and

stored in a helium-filled Vacuum Atmosphere Corporation (Hawthorne, CA )

glove box. Polarographic grade tetra-n-butylammonium perchlorate (TSAP),

hi-h was recrystallized twice from acetone-ether and dried under a vacuum

-5of better than 10-  torr for two days, was 4sed as the supporting

electrolyte at 0.1 M concentration. For electrochenical measurements a

three compartment electrochemical cell of 25 mL capacity was used. A Pt

disc of -0.03 cm2 area, was used as the working electrode. A large area

t>0 c- 2) Pt gauzeseparated from the working electrode by a fine porosity

cilass -f-it as te counter electrode. The reference electrode, a

quasireference Ag electrode, denoted as AgRE, was also separated from the

main compartment by a fine porosity glass frit and the reference and counter

electrodes were immersed in a solution containing the solvent CH2Cl2)and 0.1

k TEAP. In a typical experiment, before the addition of tre ort-a cyarine or

naphthalocyanine compounds, the CH2CI2, 0.1 M TBAP solution was stirred with

activated alumina (W'oelm Neutral Alumina - activity Super I, Woelm Pharma

GmbH and Co., Eschwege, BRD) to remove any residual water, and was then

placed in all three cell compartments. The concentrations of the SiPc(OR)2,

RO(SiPcO) 2R, and SiNc(OR) 2 in the working electrode compartment were around

2.2 -iM, 1.0 raM)and 1.4 mM, respectively. All the experiments were carried

out inside the glove box. At the conclusion of the experiments the cell was

taken out of the glove box, and the potential of the AgRE was measured
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against the aqueous saturated calomel electrode (SCE). Because of the slow

s.ift in the AgRE, mainly due to a seepage of redox couple into the

reference compartment, potentials reported vs. SCE were within + 100 mV for

SiN'fOR) 2 and + 10 mV for SiPc(OR)2 and RO(SiPcO) 2 R. Positive feedback iR

co7persation was used to minimize the uncompensated resistance during cyclic

vol tammetric experiments.

A Princeton Applied Research (PAR) model 173 potentiostat and a PAR

model 175 universal programmer equipped with a Houston Instruments (Austin,

TX) model 2000 X-Y recorder was used to obtain cyclic voltammograms and,

with a time base module, for chronoamperometry. For ac voltammetry, a

Soltec (Sun Valley, CA) model 6432, X-Y1Y2 recorder was em,-' ed. For the

a-c voltammetry, the lock-in amplifier technique which yiE the in-phase

O° component) and the out-of-phase (90' component) cor Pnts of a sine

have superimposed on a linear potential ramp was employec. For the above

measire:7ent a PAR mdel 5204 lock-in amplifier was used, which output

sim ltaneously the phase angle and the in-phase component. The low harmonic

distortion ac signal (12 mV pkp k) at different frequencies was obtained for

input into the potentiostat from a model 200 CD wide range oscillator

,r ewett-Packard, Palo Alto, CA).

Spectral Studies

The electronic spectra of the two compounds were recorded with a Cary

170 (Varian Associates, Sunnyvale, CA) spectrophotometer. Infrared spectra

were obtained with a Perkin-Elmer 598 infrared spectrophotometer

(Perkin-Elmer Corp., Norwalk, CT). A Varian HA-100 NMR spectrometer

equipped for Fourier-transform operation was used to record the 100 MHz

spectrum while a Varian XL-200 instrument was used to record the 200 MHz
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spectra. Mass spectra were obtained with an AEI MS-30 spectrometer

'.ssciated Electrical Industries, Manchester, England). The samples were

n:roduced by means of a heated solid probe (3500 C) and ionized by electron

*pa:t ,70 eV). For fluorescence studies an Aminco-Bowman spectrophotometer

with appropriate slits to achieve a band pass of 5 nm for both excitation

and e-nission was used. A photomultiplier tube R928 (Hamamatsu TV Co., Ltd.,

Middlesex, NJ) in conjunction with a grating monochromator model 7240 (Oriel

Corporation, Stamford, CT) with I wm blaze and slits for 30 nm bandwidth

were used for recording the ecl spectra. The procedure used was similar to

that reported previously.
17

RESILTS AND D:SCUSSION

Synthetic Considerations

The syntheses for SiNcCl 2 and SiNc(OR) 2 and the synthesis for

Si2z(,H 2  from SiNcCl 2 are modeled on analogous syntheses for the

ccrrespznding phthalocyanines. 13 '14 '18  In view of the nature of the routes

previously found to be useful for the preparation of silicon

phthalocyanines, 1 9 and the satisfactory character of the synthesis for

Si Nl 2t it seems probable that Si NcCl 2 will generally be found to be a good

entry point for the synthesis of silicon naphthalocyanines. Further, since

the synthesis for Sic(OH) 2 is also satisfactory, it appears the SicCI2 and

SiNc(OH) 2 will be generally found to be good intermediates for the

preparation of silicon naphthalocyanines.

Chemical and Physical Properties.

The chemical stability of the SiNc system is illustrated by its ability

to survive intact during the concentrated H2So4 hydrolysis of SiNoCI 2 . In

large part the resistance of the ring in this system to degradation can be

attributed to its aromaticity while the resistance of the silicon to

expulsion from the system can be associated with the macrocyclic (chelate)
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effect. The nonlability of the silicon of this system is of interest

because the silicon is bound by Si-N bonds. The parallel nonlability of the

silicon in the SiPc system has previously been noted as being of interest

for the same reason.
18

On the basis of the available data, it is clear that the solubility,

v:latility, and melting point, characteristics of SiNcCl 2, SiNc(OH) 2, and

SiNcCOSi(n-C 6H13)3]2 are directly associated with the size and nature of

their axial ligands. These properties can be understood in terms of the

relative strengths of the 7-r and other intermolecular interactions

involvec.

in accordance with expectations, the shapes and positions of the

naphthalocyanine bands in the infrared spectra of the three

naphthalocyanines are quite similar. Also in accordance with expectations,

the pattern of the naphtnalocyanine bands is, as is illustrated by the

.. pS,'0" Fic. 2, coparatively simple.
Tne , spectrum of 3i'c[OSi(n-C6H13)3]2 9 Fig. 3, shows that the

naphthalocyanine ring produces, not surprisingly, a large ring-current

effect. Because of this, the assignments of the individual resonances of

the hexyl compound are straightforward. However, it is of interest that

although the hexyl resonances of this compound and those of

SiPc[OSi(n-C6H13)332 are similarly positioned, the resonances of the inner

hexyl protons of the naphthalocyanine" are shifted upfield less than the

resonances of the corresponding protons of the phthalocyanine. Conversely,

the resonances of the outer hexyl protons of the naphthalocyanine are

shifted more. Since the chains are probably similarly extended and

positioned in the two compounds (in solution), it appears that for

comparable regions above the rings and near their centers the ring-current

effect is somewhat less for the naphthalocyanine ring, but that for
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comparable regions above and further out the effect is somewhat greater.

The greater ring-current effect of the naphthalocyanine ring further out can

te ascribed to its greater spread.

Comparison of the positions of like protons in the hexyl chains of

SiP:'OSiC -C6H13)3) 2 and (n-C6 .13)3SiO(SiPcO) 2Si(n-C 6 HI3)3 shows that the

texyl protons of the dimer are upfield of those of the monomer. This is

attributed to the additivity of the shielding effects of the rings in the

dimer. 20

Electrochemical Measurements

The stability limits of CH2Cl2 with 0.1 M TBAP were + 1.6 V to -2.3 V

vs. AgRE. In the working potential window two reductions and one oxidation

of SiPc(OR) 2 and two reductions and two oxidations of RO(SiPcO) 2R and

SiNc(OR) 2 were observed. Typical cyclic voltammograms at 20 mV/s are shown

in Fig. 4. From their general shape, all waves appear to be reversible

one-electron transfers. Such multiple oxidation and reduction wa;es have

been repcted for other phthalocyanines in nonaqueous media. 16'21 The

average values of the peak potentials obtained at several scan rates are

given in Table 1. Note that while it is easier to oxidize SiNc(OR) 2 than

SiPc(OR) 2, the reduction potentials of both are nearly the same. The lack

of observation of a second oxidation wave in the SiPc(OR) 2 species probably

can be attributed to the onset of background oxidation before its

appearance. A-c voltarnetry experiments performed with benzonitrile as the

solvent indicate a second oxidation wave near the solvent limit at +2.1 V

vs. SCE, 1.1 V positive of the first oxidation wave in this solvent. The

difference in potential in CH2CI2 between the first and second reduction

waves, 0.5 V, agrees with that found by Lever, et al.,21c for

PcSi(O-t-amyl) 2 in DMF. Further information about the electrochemical

processes were obtained by investigating the dependence of peak currents

m i III • ...... .
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ip and potentials (E ) on scan rate (v), and by ac voltammetric methods.
p p

For the first reduction peaks of all these compounds i PC/v 1 2 was constant

- P i p for v between 0.005 and 2.0 V/s. Similar results werepc pa

..taned for the first oxidation waves. These results demonstrate that the

products of the first oxidation and reduction are stable on the cyclic

.ota etric time scale and the waves are diffusion limited. Although it is

rmore difficult to obtain quantitative data for the later peaks, the general

shape and behavior of these also suggest stability of the product of the

second reduction for all compounds and the product of the second oxidation of

RU0SiPcO)2R and of SiN cCR)2 . The waves also appear to be Nernstian ones

with peak splittings (LE = E - E ) of the order of 80 mV. Deviation ofp pa pc

E p from the rigorous Nernstian value of about 60 mV can probably be

attributed to effects of uncompensated resistance in this relatively

resistive solvent. Further evidence for the rapidity of the heterogeneous

electron transfer reactions of all of the wa.'es was obtained by ac

volt27etric -,easire~ents 'Fig. 51. Tne in-phase 'J' cImponent cf the ac

current and the phase angle of this current with respect tc the s perirposed

50 Hz potential variation are essentially equal for all waves. The

deviation of the phase angle from the expected Nernstian value of 450 again

can probably be attributed to uncompensated resistance. If the phase angle

is adjusted to 900 in the region where no faradaic current flows (+0.1 -

-0.8 V vs AgRE), by manipulating the lock-in phase shifter, the phase angle

at the peak potentials equals 450 + 20. Similarly, the second harmnonic ac

voltammetric peaks 22, with an applied signal at 200 Hz are all essentially

equal (Fig. 6), again suggesting rapid electron transfer rates. Controlled

potential coulometry at the first reduction waves of SiPc(OR) 2 and

Si~c(OR)2 yield na pp-values (faradays/mole) of 1.0 and 1.1 respectively.

Cyclic voltammetry of the reduced solutions, with an initial anodic scan
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showed essentially the same pattern of waves as the original solution of

parent compound. Re-oxidation of these solutions consumed essentially the

sa-'e number of faradays as the initial reduction and regenerated the

starting solution. Parallel behavior was found for coulometric oxidation at

the first waves, with n -values of 1.1 (Pc) and 1.0 (Nc). These resultsapp

confirm the one-electron nature of the cyclic voltammetric waves and the

high stability of the one-electron reduced and oxidized products.

For the dimer RO( SiPcO) 2R, however, bulk electrolysis gave nap p = 2.0

for oxidation at the first anodic wave and napp = 2.2 for reduction at the

first cathodic wave. That the reduction and oxidation products were stable

was clear from voltammetric scans following bulk electrolysis as well as the

ability to regenerate the original parent solution electrolytically. Thus,

although the voltametric wave shapes are characteristic of one-electron

reactions (e.g., E Z 70 mY), these clearly represent two-electronp

transfers. Waves of this type have been observed before and are ascribed to

molecules which have two identical non-interacting systems. 23 Tnis would

suggest that there is no or little interaction between the two SiPc groups

in the dimeric molecule, with each accepting or losing an electron

independently. However, in previous cases of noninteracting systems the

potentials for electron transfer in the multi-centered species were very

near those of the monomer, while in this case the potential for oxidation of

the dimer is shifted by about 0.3 V towards less positive potentials (Table

I), with a smaller (-90 mV) shift of the first reduction wave. This shift

might be attributable to an inductive (electron donating) effect of the

SiPc(OR) group compared to the (OR) group. Alternatively the groups may be

interacting, but a rearrangement occurs following the first electron

transfer which promotes the second. Because both oxidation and reduction of

the dimer show the same 2e nature with peak splittings similar to the
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monomer, this latter proposal seems unlikely. In a previous study of the

electrochemistry of closely related SiPc-compounds, 16 in which the

c H13 3 groups attached to the Si were replaced by (CH3 (t-Bu), the

oxidation and reduction waves of the dimeric species were attributed to

one-electron reactions based on thin layer coulometric studies of 10- 6 M

solutions. The reason for this difference in behavior is not clear and

bears further investigation.

Diffusion coefficients (D) for these compounds were estimated from

Cottrell plots 22  (current vs. t-1/2 for potential steps from near the rest

potential (0 V vs. SCE) to the diffusion limited region of the first

oxidation and reduction waves). Linear i vs. t"1 12 plots with zero

intercepts were obtained for data between approximately 1 and 10 sec. For

SiP:(OR) 2, a step from 0 to +1.2 V vs. SCE or from 0 to -1.1 vs. SCE was

E-"ovye; fro-, the slope of the i vs. t 1 2 curve, = 5.7 + 1.1 x 1o6

c 2
1 i's. For Si%'c 0 2, steps of 0 to +0.8 V or 0 to -1.2 V were used and

yielded D = 5.2 + 0.4 x !0-6 cm2 /s. This slightly smaller D value is

consistent with thie larger ring size in the Nc species. For RO(SiPcO)2R,

steps from 0 to -1.0 V or 0 to +0.9 V gave D = 2.2 + 0.3 x 10-6 cm2/,s taking

n = 2. This co-paratively low value is consistent with the bulkier nature

of the dimer.

Absorption and Fluorescence

The UV-visible absorption spectra for 1.1 x 10-5 M SiPc(OR) 2 , 1.2 x

10-5 M RO(SiPcO) 2R, and 2.5 x 10- 6 M SiNc(OR) 2 in CH2CI2 are given in Fig.

7. SiPc(OR) 2 and SiNc(OR) 2 have the features expected on the basis of

previous work. 24 "26  The spectrum of SiPc(OR) 2 shows the characteristic

absorption for the Soret band at 350 nm, the N band at -270 nm, and the
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series of peaks due to the Q band transitions. The absorption in the Q-band

region (550-700 nm) appears to be composed of transitions from the ground

state to two excited states. The absorption in the Q band region for

SI,:'OP.) is similar. The wavelength for these absorptions are listed in
'2

Table 2.

The shift in the Soret and Q band absorptions toward higher energy in

tne dimer, RO(SiPcO)2R, relative to SiPc(OR) 2 has been explained previously

in terms of exciton coupling of neutral-excitation transitions of the two

rings of the dimer. 27 The UV-visible absorption spectrum of RO(SiPcO)2R has

all the features of the phthalocyanine dimer of these previous works.

Fluorescence is observed from SiPc(OR) 2 and SiNc(OR)2  in CH2 C12

solution. The uncorrected emission and excitation spectra are given in Fig.

8. Both compounds show emissions in the Q band region for excitation in

either Q or the Soret atsorption bands. The excitation spectra of these

colpour-s are essentially the same as the aLsorption spectra and show two

sets of three peaks correspcnding to absorption from the ground state to two

different excited states. The emission spectra are essentially mirror

images of the Q band absorption spectra; the emission peaks are listed in

Table 2.

A solution of RO(SiPcO) 2R exhibited very weak flourescence. However,

the excitation spectrum did not match the absorption spectrum and therefore

impurities were suspected as being the emitting species. Thin layer

chromatography confirmed the presence of at least two different impurities.

The absence of fluorescence in the pure dimer, like the absorption spectrum,

can be explained in terns of the exciton model. 28 The lower energy exciton

state, which is forbidden and therefore not observed in the absorption

spectrum, is a metastable singlet state. This allows for greatly enchanced

intersystem crossing into the triplet state. As a result, the singlet
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emission is quenched.

Electrogenerated Chemiluminescence

The high stability of the oxidized and reduced forms of SiPc(OR) 2 and

SiN:'OR)2  and the fact that both show strong emission upon photoexcitation

sJggested that these materials were good candidates for ecl studies. There

has been only one previous report of ecl from a Pc system, where very weak

emission was observed from metal-free Pc. 29 Ecl from these compounds is of

interest, because there are few systems showing emission in the red and near

infra-red region of the spectrum. The energetics of the annihilation

process can be estimated from the redox potentials of the relevant species.

30Thus, the reaction enthalpies can be estimated as about 1.8 and 1.5 eV for

the SiPc(OR) 2 and SiNc(OR) 2 systems, respectively. The energetics of the

lowest 0,0 bands, as estimated from the position of the highest energy

emission maximum, are 1.86 and 1.61 eV. Thus, these systems may have

sufficient energy to populate the emitting state directly via the electron

transfer reaction:

(OR) 2SiXt + (OR)2SiXT -> (OR) 2SiX* + (OR) 2SiX X = Pc,Nc (1)

ren a Pt electrode immersed in a 1-2 mM solution of the Pc or Nc compound

in CH2CI2 was pulsed between potentials for formation of the +1 and -1

species (for SiPc(OR) 2, between -1.2 and +1.1 V and for SiNc(OR) 2 between

-1.3 and +0.6 V) at a frequency of 0.5 Hz, weak but easily measurable

emission was observed. The ecl spectra are shown in Fig. 9. For SiNc(OR) 2

pulsing between potentials for production of the +2 and -2 species produced

the same ecl spectra; similar behavior has been seen previously, e.g., in
ubp)2+ 31a 31b I

Ru(bpy)3 2and rubrene systems, and has been attributed to

reproportionation reactions that produce the lower oxidized or reduced
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species. The ecl emissions are shifted to somewhat longer wavelengths as

:y pa,-ed to the corresponding fluorescence spectra. This shift probably can

: attributed to self-absorption of the emission in ecl, since these

*:: ~s nave Q banis (absorption peak, Fig. 7) located very close to the

aveleng-n of the onset of emission in the ecl spectrum. When corrected for

:nese atsorption effects (based on the known absorber concentration,

atsorptivity and path length) the corrected ecl spectra are shifted to

shorter wavelengths and match the fluorescence spectra. While the

energetics of the electron transfer and emission processes suggest that this

may be an "energy sufficient" or "S-route" system, it is marginally so. The

difference in emission intensities of the anodic and cathodic pulses,

clearly seen in Fig. 9, suggests some mechanistic complications. Since both

the +1 and -1 forms are quite stable, the difference might be caused by at

least sotme contribution of a "T-route" (formation of triplets in the

electron transfer reaction followed by T-T annihilation), with the +2 and -1

forms quenching the triplets at different rates. T-T annihilation has been

proposed in the delayed fluorescence of metal-free Pc.32 Finally the ecl of

the SiNc(OR) 2 system represents, to our knowledge, the longest wavelength

ecl emission yet reported, although other reports of ecl in the red region

have appeared. 29 ,33  No ecl was observed from (SiPcO 2R upon pulsing

between either the first oxidation and rediction or the second oxidation and

reduction waves.

COCNCLUSIONS

In view of the structural similarities of SiPc and SiNc systems, and in

view of the similarities between the physical and chemical properties of

SiN:Cl 2  SiNc(OH) 2, and SiNc(OR) 2 and their phthalocyanine counterparts, it

is apparent that pairs of the two types of compounds will be found to be

generally similar. Thus the properties of many silicon naphthalocyanines
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are predictable. In CH2CI2, within the solvent stability limit, there are

two reductions and one oxidation for SiPc(OR) 2 and two reductions and two

oxidations for RO(SiPcO) 2R and SiNc(OR) 2. These correspond to reversible

one electron waves for SiNc(OR) 2 and SiPc(OR) 2, but are two-electron waves

for RO(SiPcO) 2R. The values of diffusion constants (0, cm2/sec) computed

from i~t) vs t- 1/2 behavior -(potential step experiment) for the neutral

SiPc(OR) 2, RO(SiPcO)2R, and SiNc(OR) 2 are 5.7 + 1.1 x 10-6 cm 2/s, 2.2 + 0.3

x 10-6 cm2/s, and 5.2 + 0.4 x 106 cm 2/s, respectively. The compounds show

absorptions corresponding to N bands, Soret bands, and intense absorption

around 650-700 nm for SiPc(OR) 2 600-650 nm for RO(SiPcO) 2R, and 750 - 800 nm

for Si%:"0P) corresponding to Q bands. The corrected ecl maxima are around

684 nm for SiPc(OR)2 and 792 nm for SiNc(OR) 2. The ecl emission for

Si4;'3R)' 2 is at the longest wavelength reported so far. No ecl was observed

fro" the dimeric phthalocyanine.
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The structures of SiPc[OSi(n-C6H13)3]2 and SiNc[OSi(n-C 6H13)3]2,

The infrared spectrum of SiNc(OH)2 in a Nujol mull (KBr plates).

-- Tre 220 M'z V R spectra of (a) SiPc[CSi(n-C6H1 and (b)
6 13'3r2

Si o'Si(n- 6h!3) 32 in CDCl 3 ,

: e 4 yclic voltammogram of (a) 2.2 mM SiPc[OSi(n-C6H1 3)3]2 and (b) 1.4 mi

S i rCSi n_-C H6 13 3]2 , and (c) 1.0 mM (n-C6H13)3SiO(SiPcO)2Si(n-C6H 3 3 in

CH2 CI 2' 0.1 M TAP. Scan rate = 20 mV,/s.
(a' ac voltammogram of SiPc[OSi~n-C 6 13)312$ 2.2 mM, in CH2 2,

~~~ure~~~ 2' ~2 . mi H~

T5Ap; ')) ad voltamiogram of SiNc[OSl(n-C6H 3)3] 2, 1.4 mY, in CH2Cl2, 0.1

M TEA?; (c) ac v .ltam-logram of (n-C6H13)3SiO(SiPcO, 2Si(n-C 6H 13) 3  . -",

in CH2'C2$ 0.1 M TBAP. For all: ac frequency = 50 Hz; scan rate = 2

m',,'s; in phase (-); phase angle (-

7igire 6 (a) Second ra-onic ac voltammogram for the solution in Figure Sa; n)

sa-e f3r sol ,ticn in Figure 5z; (c) same for solution Figure 5C. For

all: ac r a-orta, frequen,,j = 200 Hz; scan rate = 2 mV's.

"-u,j e 7 The eleztrcnic absorption spectra of 1.1 x 10-t) M SiPC;Sin-6 , H

-------- ), 1.2 x 10-5 M (n-C6H13)3SiO(SiPcO) 2Si(n-C 6H13 )3 (---) and 2.5 x
0-6 M Si,,C OSi 3 nC

10 L (n-6H1 3)3 2 1-) in CH2Cl2
"

igure 3 Ia; Fluorescence spectrum (uncorrected) of 1.1 x 10-5 ',

SiPc[OSi(n-C6H13)3]2  in CH2C1 2.  For excitation spectrum (-), the

emission was monitored at 684 rn. For the emission spectrum (.... ), the

excitation was at 350 nm. Bandwidth = 5 nm; (b) fluorescence spectrum

(uncorrected) for 1.0 x 10-5 M SiNc[OSi6n-C6 13)3]2 in CH2CI2 , For

excitation spectrum (- ), emission was monitored at 792 nm. For

emission spectrum C-...), excitation was at 356 nm. Bandwidth = 5 nm.

Li__ __

i



-cl spectra of (a) SiPc[OSi(n-C 6H1 3)332' *)"max = 725 nm, and (b)

Si'7:[OSi(n-C6 H13 )3 12,X x  = 828 nm. Concentrations are 2 mM and 1.4 mM,m a x• 
,

respe:tively, in CH2 Cl 0.1 M TBAP. Pt electrode pulsed from +1.0 V to

-1.2 V, and +0.6 V to -1.3 V vs. AgRE, respectively, at 0.5 Hz. The

creater emission for both occurred on the cathodic pulse.



Table 1

~esof ' V vs. SCE) for SiPc(OR, R(O, and 2i~(P) n C1 2

(v vs. scE-) (V vs. SCE) (V vs.SCE')

,rnd ox. -- 1.24 I2

I S - ox. -2.00 -0. SE +0.71

ist --- 08

1.F+ 0.1 eV 1.5 0.1 eV -

E r.6 eV-



Table 2

SAbsorptio~ and Ern.ission Maxima (nm) of SiPc(OR)2 and SiNe(OR)2

SiPc(OR) 2  SiNc(OR)2

Absorption Emission Absorption Emission

o 668 668 772 772

SoO S I 638 708 732 790

So0)-S1(2 612 741 704 --

S 601 -- 686--

S S, 575 -- 655

0(2- (2) -- 636
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